PRINCIPLES OF SEDIMENTATION AND EROSION ENGINEERING IN RIVERS, ESTUARIES AND COASTAL SEAS

including mathematical modelling package (toolkit on CD-ROM)

AQUA PUBLICATIONS

(WWW.AQUAPUBLICATIONS.NL)
Previous Publications

Principles of Fluid Flow and Surface Waves in Rivers, Estuaries, Seas and Oceans by Leo C. van Rijn, 1990

Principles of Sediment transport in Rivers, Estuaries and Coastal Seas by Leo C. van Rijn, 1993

Principles of Coastal Morphology by Leo C. van Rijn, 1998
PRINCIPLES OF SEDIMENTATION AND EROSION ENGINEERING IN RIVERS, ESTUARIES AND COASTAL SEAS

Leo C. van Rijn

Professor Fluid Mechanics and Sand transport
Department of Physical Geography
University of Utrecht, The Netherlands

Senior Hydraulic Engineer, Delft Hydraulics
Delft, The Netherlands
For those who like solving morphological problems
4.3 Sediment transport, backfilling and morphological development 4.8
4.3.1 Backfilling processes ... 4.8
4.3.2 Effect of sand waves and bars 4.10
4.3.3 Effect of mud .. 4.11
4.3.4 Bulk density ... 4.13

4.4 Hydrodynamic processes .. 4.14
4.4.1 Currents .. 4.14
4.4.2 Waves 4.22

4.5 Mathematical description and models 4.25
4.5.1 Introduction ... 4.25
4.5.2 General mathematical description and simplifications 4.25
4.5.3 Simple engineering rules for channels perpendicular
 or oblique to flow ... 4.31
4.5.4 Analytical model for channels perpendicular to flow 4.50
4.5.5 Analytical model for channel parallel to the flow 4.51
4.5.6 Mathematical models .. 4.53

4.6 Data sets and hindcast studies ... 4.60
4.6.1 Introduction; available data sets 4.60
4.6.2 Steady flow; migration and sedimentation of a trench
 in a flume ... 4.61
4.6.3 Steady flow; migration and sedimentation of a trial
 dredge trench in a river .. 4.65
4.6.4 Tidal flow; sedimentation of a trial dredge channel in
 Western Scheldt Estuary, The Netherlands 4.67
4.6.5 Tidal flow; sedimentation of a trial dredge channel in
 Eastern Scheldt Estuary, The Netherlands 4.69
4.6.6 Tidal flow; sedimentation of trial dredge pit near Barrow
 in Furness, England ... 4.71
4.6.7 Tidal flow; sedimentation of a trial dredge channel in
 Asan Bay, Korea .. 4.73
4.6.8 Steady flow with waves; migration and sedimentation of
 a channel in a laboratory flume 4.75
4.6.9 Steady flow with waves; migration and sedimentation of
 channel in a laboratory basin 4.78
4.6.10 Tidal flow with waves; siltation of a trial dredge channel
 near Bahia Blanca, Argentina 4.80
4.6.11 Tidal flow with waves; sedimentation of trench in surf zone,
 Denmark ... 4.82
4.6.12 Tidal flow with waves; sedimentation of navigation channel
 to Port of Rotterdam, The Netherlands 4.84
4.6.13 Tidal flow with waves; siltation of navigation channel to
 Port of New Mangalore, India 4.85
4.6.14 Tidal flow with waves; sedimentation of navigation channel
 to Port of Warri, Nigeria .. 4.86
4.6.15 Tidal flow with waves: Sedimentation of trial trench near
 Scheveningen in North Sea, The Netherlands 4.87
4.6.16 Conclusions .. 4.88

4.7 Main factors controlling backfilling and morphological development 4.88
4.7.1 Sediment parameters and incoming sediment transport 4.88
4.7.2 Flow dynamics .. 4.90
4.7.3 Wave dynamics; wave height variation across channel 4.94
4.7.4 Channel dimensions and water depth outside channel 4.95
4.8 Control measures of sedimentation ... 4.100
 4.8.1 Introduction ... 4.100
 4.8.2 Over-dimensioning of channel ... 4.100
 4.8.3 Training walls, submerged walls and groynes .. 4.102
 4.8.4 Optimum dredging schemes ... 4.105

4.9 References .. 4.107

5. SEDIMENTATION OF FINE SAND IN COASTAL HARBOURS, INLETS AND INTAKES

5.1 Introduction .. 5.1

5.2 Flow patterns .. 5.2
 5.2.1 Coastal harbours ... 5.2
 5.2.2 Coastal inlets ... 5.4
 5.2.3 Coastal water intakes ... 5.5

5.3 Wave penetration ... 5.5

5.4 Morphological patterns; sedimentation and erosion .. 5.7
 5.4.1 Sedimentation in entrance area ... 5.7
 5.4.2 Blocking and bypassing of longshore transport 5.24

5.5 Control measures to reduce sedimentation .. 5.32

5.6 References .. 5.35

6. SEDIMENTATION OF MUD IN HARBOUR BASINS

6.1 Introduction .. 6.1

6.2 Flow patterns and water exchange in harbour basins 6.2
 6.2.1 Tidal filling and emptying processes .. 6.3
 6.2.2 Horizontal circulation ... 6.4
 6.2.3 Vertical circulation .. 6.8

6.3 Wave penetration in coastal harbour basins ... 6.12

6.4 Sedimentation processes in harbour basins .. 6.13
 6.4.1 Observed sedimentation rates ... 6.13
 6.4.2 Predicted sedimentation from suspension flows (mud) 6.28
 6.4.3 Predicted sedimentation from near-bed turbidity currents (mud) 6.40

6.5 Control measures to reduce sedimentation and dredging in harbour basins 6.43

6.6 Design rules for harbour basins .. 6.57

6.7 References .. 6.59
7. SEDIMENTATION OF SAND AND MUD IN RESERVOIRS IN RIVERS

7.1 Introduction .. 7.1
7.2 Sediment input and trapping efficiency ... 7.5
7.3 Sedimentation patterns in reservoirs ... 7.11
7.4 Sediment patterns in downstream reaches ... 7.14
7.5 Bulk density of deposited sediment ... 7.15
7.6 Sediment removal ... 7.16
7.7 Turbidity currents ... 7.19
 7.7.1 Definitions ... 7.19
 7.7.2 Field and laboratory observations .. 7.20
 7.7.3 Basic equations and closure expressions .. 7.24
 7.7.4 Auto-suspending turbidity currents .. 7.30
 7.7.5 Numerical models for turbidity currents and example computations 7.32
 7.7.6 Minimum bed slope and length scale for self-accelerating turbidity currents . 7.40
7.8 Mathematical models for sedimentation and flushing 7.42
7.9 References .. 7.44

8. EROSION CONTROL MEASURES ALONG COASTS

8.1 Introduction .. 8.1
 8.1.1 Basic causes of erosion .. 8.1
 8.1.2 Dune and beach erosion .. 8.4
 8.1.3 Coastal variability ... 8.15
 8.1.4 Coastal predictability .. 8.18
 8.1.5 Types of coastal structures ... 8.20
8.2 Beach nourishment .. 8.22
 8.2.1 Introduction ... 8.22
 8.2.2 Design aspects and effectiveness .. 8.25
 8.2.3 Application of shoreline model for beach nourishment 8.32
 8.2.4 Examples of beach nourishment projects ... 8.34
8.3 Groynes ... 8.38
 8.3.1 Types of groynes ... 8.38
 8.3.2 Hydraulic and morphodynamic effects .. 8.39
 8.3.3 Design aspects and effectiveness .. 8.40
 8.3.4 Applications of groynes .. 8.44
 8.3.5 Application of shoreline model for groynes .. 8.45
8.4 Jetties and harbour breakwaters .. 8.48
 8.4.1 Introduction .. 8.48
 8.4.2 Hydraulic and morphodynamic effects .. 8.51
 8.4.3 Design aspects and effectiveness .. 8.51
 8.4.4 Sand bypassing ... 8.52
8.5 Detached breakwaters and reefs ... 8.53
 8.5.1 Introduction .. 8.53
 8.5.2 Hydraulic and morphodynamic effects ... 8.55
 8.5.3 Design aspects and effectiveness ... 8.57
 8.5.4 Examples of morphological effects of detached breakwaters in micro-tidal conditions ... 8.59
 8.5.5 Examples of morphological effects of detached breakwaters in meso/macro-tidal conditions ... 8.70
 8.5.6 Modelling studies .. 8.74

8.6 Soft artificial reef structures ... 8.75
 8.6.1 Introduction .. 8.75
 8.6.2 Hydrodynamic and morphodynamic effects 8.75
 8.6.3 Design aspects and effectiveness ... 8.76
 8.6.4 Examples of feeder berms and reef berms (shoreface mounds/nourishments) in micro-tidal conditions ... 8.78
 8.6.5 Examples of feeder berms and reef berms (shoreface mounds/nourishments) in meso and macro-tidal conditions ... 8.80
 8.6.6 Example computations for feeder berms (shoreface nourishments) in meso-tidal conditions ... 8.87

8.7 Seawalls, seadikes and revetments ... 8.92
 8.7.1 Introduction .. 8.92
 8.7.2 Design aspects and effectiveness ... 8.93

8.8 Discussion and conclusions .. 8.94

8.9 References .. 8.100

9. LOCAL SCOUR NEAR STRUCTURES

9.1 Introduction .. 9.1

9.2 Scour downstream of sills, weirs and barrages 9.2

9.3 Scour near seawalls ... 9.4
 9.3.1 Review of scour data ... 9.4
 9.3.2 Wave-related scour near toe of seawall ... 9.6

9.4 Scour near toe of wall-type breakwaters .. 9.8

9.5 Scour near toe of rubble-type breakwaters ... 9.11

9.6 Scour near tip of breakwaters and groynes 9.14
 9.6.1 Wave-dominated scour near tip of vertical wall-type breakwater ... 9.14
 9.6.2 Wave-dominated scour near tip of rubble-mound breakwater ... 9.15
 9.6.3 Current-dominated scour near tip of rubble-mound breakwaters and groynes ... 9.17
11. DREDGING AND DUMPING OF SEDIMENT DEPOSITS

11.1 Introduction ... 11.1

11.2 Dredging aspects .. 11.2
 11.2.1 Conventional dredging equipment 11.2
 11.2.2 Trailing suction hopper dredging 11.3
 11.2.3 Agitation dredging .. 11.5
 11.2.4 Environmental dredging ... 11.6
 11.2.5 Soil schematization and classification 11.7
 11.2.6 Dredging volumes (in-situ m3) and accuracy 11.7
 11.2.7 Production and cost .. 11.8
 11.2.8 Selection of dredger type ... 11.10

11.3 Turbidity caused by dredging .. 11.10

11.4 Dumping sites and methods ... 11.15
 11.4.1 Dumping in open water .. 11.15
 11.4.2 Dumping processes .. 11.17
 11.4.3 Examples of dumping activities and turbidity caused by dumping .. 11.19

11.5 Far-field behaviour of offshore dumped sediment material 11.20

11.6 Numerical simulation of disposal patterns 11.22

11.7 References .. 11.23

APPENDIX A Computed sand concentrations and transport rates A.1
APPENDIX B Overview of available sediment transport and sedimentation/erosion models ... B.1
Preface

The prediction of sedimentation and erosion volumes near engineering works in rivers, estuaries and coastal seas is a delicate task requiring a profound knowledge of the hydro and sediment dynamics involved.

To solve this problem, various tools are at our disposal, being: databases, laboratory scale models and mathematical morphological models. Nowadays, the morphological models ranging from simple 1D models to sophisticated 3D models are the most popular tools available, because they are relatively easy to operate and can model the problem at full scale. It should be realized, however, that these models are still relatively crude tools, as our knowledge of sediment transport processes is rather limited, particularly in coastal waters where the interaction of currents and waves is the basic driving force. Despite our limited knowledge of sediment transport processes, engineers confronted with sedimentation and erosion problems have to apply the available models to evaluate the morphological consequences of engineering works. When dealing with these problems, three basic rules should always be kept in mind:

1. try to understand the physical system based on available data;
2. try to estimate the morphological effects of engineering works based on simple methods (rules of thumb, simplified models, analogy models, i.e. comparison with similar cases elsewhere);
3. use detailed models for fine-tuning and determination of uncertainties (sensitivity study trying to find the most influential parameters).

The need for simple models for a first quick assessment has inspired the author throughout his career to develop a morphological toolkit (available on CD-ROM) consisting of easy to use Excel files and Fortran models. Although the toolkit is easy to use, it requires a sharp engineering eye to schematize a complicated real world problem into a simple idealized case and to obtain meaningful results. Depending on the scale and impact of the problem, much more refined 2D and 3D models should be considered for use to obtain more detailed and accurate results of not only bulk volumes but also of detailed morphological patterns, which simpler models can not produce.

Increasing computer power has greatly enhanced and improved our capabilities. Now, really big models can be run over a long time. The detailed computed morphological patterns can be studied over and over again by running the output animations to obtain a better view of the processes in time. The interpretation of these detailed patterns and processes will undoubtedly initiate a learning process improving the skills of the ‘morphological’ engineers. This all will make our profession so much more interesting and mature and it brings me to a remark of the great Chinese Philosopher Confusius:

“To learn and from time to time to apply what one has learned; is n’t that a pleasure?”

Acknowledgements

The author would like to thank his colleagues at Delft Hydraulics, the Universities of Delft and Utrechts and at various other national and international institutes for the many lively and stimulating discussions of complicated morphological problems all over the world. It has been the inspiration for writing this book and developing the toolkit on sedimentation and erosion problems in rivers, estuaries and coastal seas.